miR-342-5p Is a Notch Downstream Molecule and Regulates Multiple Angiogenic Pathways Including Notch, Vascular Endothelial Growth Factor and Transforming Growth Factor β Signaling.
نویسندگان
چکیده
BACKGROUND Endothelial cells (ECs) form blood vessels through angiogenesis that is regulated by coordination of vascular endothelial growth factor (VEGF), Notch, transforming growth factor β, and other signals, but the detailed molecular mechanisms remain unclear. METHODS AND RESULTS Small RNA sequencing initially identified miR-342-5p as a novel downstream molecule of Notch signaling in ECs. Reporter assay, quantitative reverse transcription polymerase chain reaction and Western blot analysis indicated that miR-342-5p targeted endoglin and modulated transforming growth factor β signaling by repressing SMAD1/5 phosphorylation in ECs. Transfection of miR-342-5p inhibited EC proliferation and lumen formation and reduced angiogenesis in vitro and in vivo, as assayed by using a fibrin beads-based sprouting assay, mouse aortic ring culture, and intravitreal injection of miR-342-5p agomir in P3 pups. Moreover, miR-342-5p promoted the migration of ECs, accompanied by reduced endothelial markers and increased mesenchymal markers, indicative of increased endothelial-mesenchymal transition. Transfection of endoglin at least partially reversed endothelial-mesenchymal transition induced by miR-342-5p. The expression of miR-342-5p was upregulated by transforming growth factor β, and inhibition of miR-342-5p attenuated the inhibitory effects of transforming growth factor β on lumen formation and sprouting by ECs. In addition, VEGF repressed miR-342-5p expression, and transfection of miR-342-5p repressed VEGFR2 and VEGFR3 expression and VEGF-triggered Akt phosphorylation in ECs. miR-342-5p repressed angiogenesis in a laser-induced choroidal neovascularization model in mice, highlighting its clinical potential. CONCLUSIONS miR-342-5p acts as a multifunctional angiogenic repressor mediating the effects and interaction among angiogenic pathways.
منابع مشابه
Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis.
Vascular morphogenesis encompasses a temporally regulated set of morphological changes that endothelial cells undergo to generate a network of interconnected tubules. Such a complex process inevitably involves multiple cell signaling pathways that must be tightly coordinated in time and space. The formation of a new capillary involves endothelial cell activation, migration, alignment, prolifera...
متن کاملmiR-342-5p Regulates Neural Stem Cell Proliferation and Differentiation Downstream to Notch Signaling in Mice
Notch signaling is critically involved in neural development, but the downstream effectors remain incompletely understood. In this study, we cultured neurospheres from Nestin-Cre-mediated conditional Rbp-j knockout (Rbp-j cKO) and control embryos and compared their miRNA expression profiles using microarray. Among differentially expressed miRNAs, miR-342-5p showed upregulated expression as Notc...
متن کاملThe Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching.
Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using gamma-secretase inhibitor revealed a striking vascular...
متن کاملDev121913 2364..2374
Physiological angiogenesis depends on the highly coordinated actions of multiple angiogenic regulators. CCN1 is a secreted cysteine-rich and integrin-binding matricellular protein required for proper cardiovascular development. However, our understanding of the cellular origins and activities of this molecule is incomplete. Here, we show that CCN1 is predominantly expressed in angiogenic endoth...
متن کاملThe matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling.
Physiological angiogenesis depends on the highly coordinated actions of multiple angiogenic regulators. CCN1 is a secreted cysteine-rich and integrin-binding matricellular protein required for proper cardiovascular development. However, our understanding of the cellular origins and activities of this molecule is incomplete. Here, we show that CCN1 is predominantly expressed in angiogenic endoth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Heart Association
دوره 5 2 شماره
صفحات -
تاریخ انتشار 2016